

Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding TALARC

Chemwatch Hazard Alert Code: 2

Issue Date: 01/11/2019 Print Date: 11/11/2020 L.GHS.AUS.EN

Chemwatch: 22-5837 Version No: 5.1.1.1 Safety Data Sheet according to WHS and ADG requirements

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding	
Synonyms	Trade names: SF-71LF, SF-70MX, Supercored 70NS, Supercored 71, SC-LHM Cored, SF-71MC	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Welding.
Neievaiit luciitilleu uses	weluling.

Details of the supplier of the safety data sheet

Registered company name	TALARC	
Address	0-16 Syme Street Brunswick VIC 3056 Australia	
Telephone	3 9388 0588	
Fax	+61 3 9388 0710	
Website	www.talarc.com.au	
Email	sales@talarc.com	

Emergency telephone number

Association / Organisation	TALARC	
Emergency telephone numbers	+61 3 9388 0588 (Hours 9am-5pm AEST)	
Other emergency telephone numbers	Not Available	

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable
Classification [1]	Acute Toxicity (Inhalation) Category 4
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Warning

Hazard statement(s)

Chemwatch: **22-5837** Version No: **5.1.1.1** Page 2 of 11

Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding

Issue Date: **01/11/2019**Print Date: **11/11/2020**

H332

Harmful if inhaled.

Precautionary statement(s) Prevention

P271	Use only outdoors or in a well-ventilated area.	
P261	Avoid breathing dust/fumes.	

Precautionary statement(s) Response

P312	Call a POISON CENTER or doctor/physician if you feel unwell.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available		wire with flux-core
Not Available		which upon use generates:
Not Available	>60	welding fumes
Not Available		as
1309-37-1.		iron oxide fume
7439-96-5.		manganese fume
69012-64-2		silica welding fumes
7429-90-5.		aluminium fumes
Not Available		titanium fume

SECTION 4 First aid measures

Description of first aid measures

,		
Eye Contact	 Particulate bodies from welding spatter may be removed carefully. DO NOT attempt to remove particles attached to or embedded in eye. Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. Seek urgent medical assistance, or transport to hospital. For "arc eye", i.e. welding flash or UV light burns to the eye: Place eye pads or light clean dressings over both eyes. Seek medical assistance. 	
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.	
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. 	
Ingestion	Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastro-intestinal tract	

Chemwatch: 22-5837
Version No: 5.1.1.1
Hyundai Carbon St.

Page 3 of 11 Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding

Issue Date: **01/11/2019**Print Date: **11/11/2020**

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- ▶ The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

▶ There is no restriction on the type of extinguisher which may be used.

Special hazards arising from the substrate or mixture

Welding electrodes should not be allowed to come into contact with strong acids or other substances which are corrosive to metals.

Welding arc and metal sparks can ignite combustibles.

Advice for firefighters

Advisor for mongricos		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 	
Fire/Explosion Hazard	 Non combustible. Not considered to be a significant fire risk, however containers may burn. In a fire may decompose on heating and produce toxic / corrosive fumes. 	
HAZCHEM	Not Applicable	

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Major Spills	Place in suitable containers for disposal. Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment if risk of overexposure exists. Prevent, by any means available, spillage from entering drains or water courses. Contain spill/secure load if safe to do so. Bundle/collect recoverable product and label for recycling. Collect remaining product and place in appropriate containers for disposal. Clean up/sweep up area. Water may be required. If contamination of drains or waterways occurs, advise emergency services.
Minor Spills	Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety glasses. Use dry clean up procedures and avoid generating dust.

Chemwatch: **22-5837** Page **4** of **11**

Version No: **5.1.1.1**

Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding

Issue Date: **01/11/2019**Print Date: **11/11/2020**

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

- Limit all unnecessary personal contact.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- ▶ Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.
- Safe handling
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- Store in original containers.
- ► Keep containers securely sealed.
- ► Store in a cool, dry, well-ventilated area.
- ▶ Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.

Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.

▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	Packaging as recommended by manufacturer.Check that containers are clearly labelled

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

Storage incompatibility

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	iron oxide fume	Iron oxide fume (Fe2O3) (as Fe)	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	manganese fume	Manganese, fume (as Mn)	1 mg/m3	3 mg/m3	Not Available	Not Available
Australia Exposure Standards	aluminium fumes	Aluminium, pyro powders (as Al)	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	aluminium fumes	Aluminium (metal dust)	10 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	aluminium fumes	Aluminium (welding fumes) (as Al)	5 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
iron oxide fume	Iron oxide; (Ferric oxide)	15 mg/m3	360 mg/m3	2,200 mg/m3
manganese fume	Manganese	3 mg/m3	5 mg/m3	1,800 mg/m3
silica welding fumes	Silica, amorphous fume	45 mg/m3	500 mg/m3	3,000 mg/m3

Ingredient	Original IDLH	Revised IDLH
iron oxide fume	2,500 mg/m3	Not Available
manganese fume	500 mg/m3	Not Available
silica welding fumes	Not Available	Not Available
aluminium fumes	Not Available	Not Available

Chemwatch: 22-5837 Page 5 of 11

Version No: 5.1.1.1

Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding

Issue Date: **01/11/2019**Print Date: **11/11/2020**

Odour Safety Factor(OSF) OSF=0.00025 (welding fumes)

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

- A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities
- B 26-550As "A" for 50-90% of persons being distracted
- C 1-26 As "A" for less than 50% of persons being distracted
- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- E <0.18 As "D" for less than 10% of persons aware of being tested

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Special ventilation requirements apply for processes which result in the generation of barium, chromium, lead, or nickel fume and in those processes which generate ozone.

The use of mechanical ventilation by local exhaust systems is required as a minimum in all circumstances (including outdoor work). (In confined spaces always check that oxygen has not been depleted by excessive rusting of steel or snowflake corrosion of aluminium)

Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
welding, brazing fumes (released at relatively low velocity into moderately still air)	0.5-1.0 m/s (100-200 f/min.)

Within each range the appropriate value depends on:

Lower end of the range Upper end of the ran	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of welding or brazing fumes generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

If risk of inhalation or overexposure exists, wear SAA approved respirator or work in fume hood.

Personal protection

·

Welding helmet with suitable filter. Welding hand shield with suitable filter.

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Chemwatch: **22-5837** Page **6** of **11**

Version No: **5.1.1.1**

Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding

Issue Date: **01/11/2019**Print Date: **11/11/2020**

- Goggles or other suitable eye protection shall be used during all gas welding or oxygen cutting operations. Spectacles without side shields, with suitable filter lenses are permitted for use during gas welding operations on light work, for torch brazing or for inspection.
 For most open welding/brazing operations, goggles, even with appropriate filters, will not afford sufficient facial protection for operators. Where possible use welding helmets or handshields corresponding to EN 175, ANSI Z49:12005, AS 1336 and AS 1338 which provide the maximum possible facial protection from flying particles and fragments. [WRIA-WTIA Technical Note 7]
 An approved face shield or welding helmet can also have filters for optical radiation protection, and offer additional protection
 - against debris and sparks.

 UV blocking protective spectacles with side shields or welding goggles are considered primary protection, with the face shield
 - or welding helmet considered secondary protection.
 - The optical filter in welding goggles, face mask or helmet must be a type which is suitable for the sort of work being done. A filter suitable for gas welding, for instance, should not be used for arc welding.
 - Face masks which are self dimming are available for arc welding, MIG, TIG and plasma cutting, and allow better vision before the arc is struck and after it is extinguished.

	the are to drawk and after it to extinguished.
Skin protection	See Hand protection below
Hands/feet protection	Welding Gloves Safety footwear
Body protection	See Other protection below
Other protection	Overalls • Eyewash unit. Aprons, sleeves, shoulder covers, leggings or spats of pliable flame resistant leather or other suitable materials may also be

required in positions where these areas of the body will encounter hot metal.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Carbon steel electrode, insoluble in water.		
Physical state	Manufactured	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (°C)	Not Applicable	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Applicable
Vapour pressure (kPa)	Not Applicable	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7

Chemwatch: **22-5837** Page **7** of **11**

Version No: 5.1.1.1 Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding

Issue Date: **01/11/2019**Print Date: **11/11/2020**

Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.

Manganese fume is toxic and produces nervous system effects characterised by tiredness. Acute poisoning is rare although acute inflammation of the lungs may occur. A chemical pneumonia may also result from frequent exposure. Inhalation of freshly

Aluminium fume, as aluminium oxide, is a respiratory tract irritant. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to

Inhaled

Manganese tume is toxic and produces nervous system effects characterised by tiredness. Acute poisoning is rare although acute inflammation of the lungs may occur. A chemical pneumonia may also result from frequent exposure. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure. Fumes evolved during welding operations may be irritating to the upper-respiratory tract and may be harmful if inhaled. Harmful levels of ozone may be found when working in confined spaces. Symptoms of exposure include irritation of the upper membranes of the respiratory tract and lungs as well as pulmonary (lung) changes including irritation, accumulation of fluid (congestion and oedema) and in some cases haemorrhage. Exposure may aggravate any pre-existing lung condition such as bronchitis, asthma or emphysema.

Shielding gases may act as simple asphyxiants if significant levels are allowed to accumulate. Oxygen monitoring may be necessary.

Ingestion

Not normally a hazard due to physical form of product.

Skin Contact

Skin contact does **not** normally present a hazard, though it is always possible that occasionally individuals may be found who react to substances usually regarded as inert.

Arc rays can burn skin

Eye

Fumes from welding/brazing operations may be irritating to the eyes. Arc rays can injure eyes

Chronic

Principal route of exposure is inhalation of welding fumes from electrodes and workpiece. Reaction products arising from electrode core and flux appear as welding fume depending on welding conditions, relative volatilities of metal oxides and any coatings on the workpiece. Studies of lung cancer among welders indicate that they may experience a 30-40% increased risk compared to the general population. Since smoking and exposure to other cancer-causing agents, such as asbestos fibre, may influence these results, it is not clear whether welding, in fact, represents a significant lung cancer risk. Whilst mild steel welding represents little risk, the stainless steel welder, exposed to chromium and nickel fume, may be at risk and it is this factor which may account for the overall increase in lung cancer incidence among welders. Cold isolated electrodes are relatively harmless. Welding fume with high levels of ferrous materials may lead to particle deposition in the lungs (siderosis) after long exposure. This clears up when exposure stops. Chronic exposure to iron dusts may lead to eye disorders.

severe disorders of the nervous system, has been reported in welders working on Mn steels in confined spaces. Silica and silicates in welding fumes are non-crystalline and believed to be non-harmful.

Other welding process exposures can arise from radiant energy UV flash burns, thermal burns or electric shock

The welding arc emits ultraviolet radiation at wavelengths that have the potential to produce skin tumours in animals and in over-exposed individuals, however, no confirmatory studies of this effect in welders have been reported.

Hyundai Carbon Steel	TOXICITY	IRRITATION
Electrodes For Flux Cored Arc Welding	Not Available	Not Available
	TOXICITY	IRRITATION
iron oxide fume	5500 mg/kg ^[2]	Not Available
	Oral (rat) LD50: >10000 mg/kg ^[2]	
	TOXICITY	IRRITATION
manganese fume	$2.3 \ \mathrm{mg/kg^{[2]}}$	Eye (rabbit) 500mg/24H Mild
	Oral (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
		Skin (rabbit) 500mg/24H Mild
		Skin: no adverse effect observed (not irritating) ^[1]

Chemwatch: **22-5837** Page **8** of **11**

Version No: **5.1.1.1**

Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding

Issue Date: **01/11/2019**Print Date: **11/11/2020**

	TOXICITY	IRRITATION
silica welding fumes	Not Available	Eye: no adverse effect observed (not irritating) ^[1]
		Skin: no adverse effect observed (not irritating) ^[1]
	TOXICITY	IRRITATION
aluminium fumes	Not Available	Eye: no adverse effect observed (not irritating) ^[1]
		Skin: no adverse effect observed (not irritating) ^[1]
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

For silica amorphous:

Derived No Adverse Effects Level (NOAEL) in the range of 1000 mg/kg/d.

In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin.

When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals.

After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification.

Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser.

Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact. Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content), all of which subsided after exposure.

SILICA WELDING FUMES

Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle size decreases so does the NOAEL/LOAEL.

Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected.

For Synthetic Amorphous Silica (SAS)

Repeated dose toxicity

Oral (rat), 2 weeks to 6 months, no significant treatment-related adverse effects at doses of up to 8% silica in the diet. Inhalation (rat), 13 weeks, Lowest Observed Effect Level (LOEL) =1.3 mg/m3 based on mild reversible effects in the lungs. Inhalation (rat), 90 days, LOEL = 1 mg/m3 based on reversible effects in the lungs and effects in the nasal cavity. For silane treated synthetic amorphous silica:

Repeated dose toxicity: oral (rat), 28-d, diet, no significant treatment-related adverse effects at the doses tested. There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Reports indicate high/prolonged exposures to amorphous silicas induced lung fibrosis in experimental animals; in some experiments these effects were reversible. [PATTYS]

Acute Toxicity	✓	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Version No: **5.1.1.1**

Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding

Issue Date: **01/11/2019**Print Date: **11/11/2020**

Legend:

★ - Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 Ecological information

Toxicity

Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding	Endpoint	Test Duration (hr)		Species		Value	Source
	Not Available	Not Available		Not Available		Not Available	Not Available
iron oxide fume	Endpoint	Test Duration (hr)		Species		Value	Source
	LC50	96		Fish		0.05mg/L	2
	EC50	48		Crustacea		5.11mg/L	2
	EC50	72		Algae or other aquatic plants		18mg/L	2
	NOEC	504		Fish		0.52mg/L	2
manganese fume	Endpoint	Test Duration (hr)		Species		Value	Source
	LC50	96		Fish		>3.6mg/L	2
	EC50	48		Crustacea		>1.6mg/L	2
	EC50	72	Algae or other aquatic plants			2.8mg/L	2
	EC10	72 Algae or other aquatic plants			2.6mg/L	2	
	NOEC	48		Crustacea		1.6mg/L	2
	Endpoint	Test Duration (hr)		Species		Value	Source
	LC50	96		Fish		>100mg/L	2
silica welding fumes	EC50	72		Algae or other aquatic plants		4-200mg/L	2
	NOEL	72		Algae or other aquatic plants		10-mg/L	2
	Endpoint	Test Duration (hr)	Sp	Species Value		Source	
	LC50	96	Fis	Fish		0.001-0.134mg/L	
aluminium fumes	EC50	48	Crustacea		0.7364mg/L		2
	EC50	72	Algae or other aquatic plants		0.001-0.799mg/L		2
	NOEC	240	Cr	ustacea	0.001	-0.1002mg/L	2
Legend:	3. EPIWIN St	ite V3.12 (QSAR) - Aquatic Tox	cicity Data (Es	egistered Substances - Ecotoxicolo timated) 4. US EPA, Ecotox databa n) - Bioconcentration Data 7. MET.	ase - Aqua	atic Toxicity Da	ta 5.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients No Data available for all ingredients	

Bioaccumulative potential

Ingredient	Bioaccumulation		
	No Data available for all ingredients		

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Page 10 of 11

Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding

Issue Date: **01/11/2019**Print Date: **11/11/2020**

Waste treatment methods

Product / Packaging disposal

- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- ► Consult State Land Waste Management Authority for disposal.
- ▶ Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

iron oxide fume is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 $\,$

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 5}$

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

manganese fume is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

silica welding fumes is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

aluminium fumes is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

national involvery status		
Status		
Yes		
No (iron oxide fume; manganese fume; silica welding fumes; aluminium fumes)		
Yes		
No (iron oxide fume; manganese fume; silica welding fumes; aluminium fumes)		
Yes		
Yes		
No (manganese fume; aluminium fumes)		
Yes		

Chemwatch: 22-5837 Page 11 of 11 Issue Date: 01/11/2019 Version No: 5.1.1.1 Print Date: 11/11/2020

Hyundai Carbon Steel Electrodes For Flux Cored Arc Welding

National Inventory	Status	
Taiwan - TCSI	Yes	
Mexico - INSQ	No (silica welding fumes)	
Vietnam - NCI	Yes	
Russia - ARIPS	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 Other information

Revision Date	01/11/2019
Initial Date	30/12/2009

SDS Version Summary

Version	Issue Date	Sections Updated
4.1.1.1	01/09/2016	Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Chronic Health, Classification, Fire Fighter (extinguishing media), Fire Fighter (fire incompatibility), First Aid (eye), First Aid (swallowed), Storage (storage requirement)
5.1.1.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.